加入收藏 | 设为首页 | 会员中心 | 我要投稿 潍坊站长网 (https://www.0536zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

政府大数据治理:政府管理的新样式

发布时间:2021-06-18 18:46:52 所属栏目:大数据 来源:互联网
导读:大数据是从各种渠道收集的大量数字数据的总称,由于它数量巨大、未经处理、非结构化,无法通过目前主流的软件工具在合理时间进行采集、存储和处理。据IBM统计,全球近90%的数据是在过去的2年中生成的,每天增加2.5 EB(1 EB=1 024 PB)数据,其中,约90%的数
大数据是从各种渠道收集的大量数字数据的总称,由于它数量巨大、未经处理、非结构化,无法通过目前主流的软件工具在合理时间进行采集、存储和处理。据IBM统计,全球近90%的数据是在过去的2年中生成的,每天增加2.5 EB(1 EB=1 024 PB)数据,其中,约90%的数据是非结构化的。来自网络和云平台的大数据为价值创造和商业智能提供了新的机会,可以为任何组织提供决策支持。尽管如此,大数据也意味着新的挑战,涉及复杂性、安全性和隐私风险以及对新技术和技能的要求。虽然商业企业在大数据应用和技术开发领域处于领先地位,但是政府部门也已开始利用来自网络、生物和传感器、视频等多种渠道的快速增长的动态数据,以获得洞察力和进行及时决策。面对大数据带来的机遇和挑战,各国政府都想在这个领域占得先机,虽然实施方案有所差异,但在决策理念上却几乎一致,即在宏观层面部署符合本国国情的大数据战略,在中观层面设计大数据治理的体制机制,在微观层面考虑大数据管理的应对策略、程序和行动。
 
2009年,美国政府上线了data.gov,这是全球第一个开放政府数据项目,它是一个数据仓库,目前它拥有近500万个数据集,涵盖交通、经济、医疗、教育和公共服务以及多种应用领域的数据。2012年,美国政府宣布了“大数据研究与开发计划(big data research and development initiative)”,投资2亿美元,主要目标是发展最先进的核心大数据技术,加快科学和工程学的发现速度,加强国家安全,转变教学方式,扩大开发和使用大数据技术。2012年,美国国家科学基金会(National Science Foundation,NSF)和美国国立卫生研究院(National Institutes of Health,NIH)联合启动了“发展大数据科学与工程核心技术(core techniques and technologies for advancing big data science & engineering)”项目,旨在发展核心科学技术手段,以提取、管理、分析、可视化来自大量、多样、分布式、异构数据集中的有用信息。2014年,NIH已在亚马逊云服务(AWS)平台上累积了数百TB的人类基因数据,研究人员无需开发自身的超级计算功能即可访问和分析其中的大量基因数据。2010 年,欧盟启动“欧洲数字议程(digital agenda for Europe)”战略,以解决如何通过快速和超快速的互操作互联网应用程序在单一数字市场为欧盟公民带来可持续的经济和社会利益的问题。2012年,欧盟委员会在“欧洲数字议程以及2012挑战(digital agenda for Europe and challenges for 2012)”计划中详细介绍了大数据战略,为确保欧盟成员国之间的网络安全和数据互联安全,该战略强调了欧盟成员国之间公共数据的安全性以及包括政府等在内的公共机构管理下的大数据的价值潜力,并明确该战略是欧盟数字化议程的一部分。欧盟20个成员国与IBM合作发起了一项名为穹顶(DOME)的大数据项目,该项目由荷兰射电天文学研究所(ASTRON)和IBM合作提供Exa超级计算机技术,旨在解决有关可观测宇宙的一系列科学问题,每天能够处理从平方公里射电阵(square kilometre array,SKA)射电望远镜产生的超过1 EB的数据。英国是欧洲较早实施大数据计划的国家之一,于2004年成立了英国地平线扫描中心(Horizon Scanning Center, HSC),以提高政府应对跨部门和多学科挑战的能力。英国政府于2009年创建了开放政府数据网站data.gov.uk,为公共部门的数据利用和数据共享提供一站式数据服务。韩国于2011年发布的“大数据计划(big data initiative)”旨在通过大数据促进知识融合和行政大数据分析。2005年到2011年,日本教育、文化、体育、科学和技术部(MEXT)与大学以及其他研究机构合作,启动了“信息爆炸时代网络基础设施(cyber infrastructure for the information-explosion era,Infoplosion)”项目;MEXT与日本国家科学基金会合作,加强研究并利用大数据技术预防、缓解和管理自然灾害;日本内政和通信部下属的信息通信委员会和信息通信技术(information communication and technology,ICT)战略委员会将“大数据应用”作为日本2020年的关键任务。
 
在世界各国纷纷借助大数据技术发展提升国家治理能力和战略能力的同时,我国对大数据的认识也不断加强。2006年我国发布了《国家电子政务总体框架》,明确要建设国家电子政务网络、政府信息资源目录体系与交换体系(government information resource catalog system and interchange system,GIRCSIS)和信息安全基础设施。2009年至今,已经建起全国性的政府信息资源目录体系与交换体系基础设施。2015年中华人民共和国国务院通过了《促进大数据发展行动纲要》,指出大数据在日常生活中发挥着越来越重要的作用。在中国共产党第十八届中央委员会第五次全体会议上,与大数据相关的概念被反复提及,“实施国家大数据战略,推进数据资源开放共享”的建议被正式提出。李国杰认为大数据可能是中国信息产业从跟踪走向引领的突破口。长期以来,我国政府数据仅被视为管理类项目的下属内容,在数据管理方面暂未建立政府机构体系下符合关联部门合作实情的治理体系。
 
不同国家发展大数据战略和实施大数据项目选择的领域、侧重的问题不同,为了便于理解和比较,笔者将这些政府大数据项目按照其数据特征和应用领域分为4个象限,如图1所示。其中,横坐标表示应用领域,左边表示企业应用,右边表示政府应用;纵坐标表示数据特征,上面表示大数据,下面表示政府数据。
 
从图1可以发现3点。第一,正在实施和已经运行的大数据项目大多采取共享存储的方式与政府或者企业共享存储在数据库中的结构化数据,多数大数据项目没有使用实时、动态以及非结构化或半结构化数据,例如美国的“开放政府数据”项目data.gov,英国的“开放政府数据”项目data.gov.uk,我国的GIRCSIS项目。第二,政府部门启动的大数据计划均利用了大型和复杂的政府数据集,政府希望大数据能够增强政府为社会服务的能力,应对经济、卫生健康、自然灾害、恐怖主义等重大问题的挑战。例如,欧盟和IBM合作的穹顶项目,美国疾病控制与预防中心的用于细菌和疾病暴发的联网基因组学(networked phylogenomics for bacteria and outbreak ID,NPBOID)项目、美国国家科学基金会和美国国立卫生研究院的发展大数据科学与工程核心技术项目、美国亚马逊云服务中人类基因数据(Genmone on AWS)项目、英国地平线扫描中心项目、韩国反腐败和民权委员会的投诉信息分析中心(complaints information analysis center,CIAC)项目、韩国的国家DNA管理(national DNA management, NDM)项目、韩国的预防口蹄疫综合征(preventing foot and mouth disease syndrome,PFMDS)项目、日本智能交通系统(intelligent traffic system,ITS)项目以及“信息爆炸时代网络基础设施”项目,这些大数据计划大部分才刚刚开始,这也意味着政府大数据计划仍处于早期阶段。第三,大多数大数据应用于政府改善公民参与公共事务、政府与商业企业合作领域,而政府内部的应用较少。
 
 
 
图1 政府数据以及政府大数据计划与实践
 
2 政府大数据治理概念溯源
 
“治理危机(crisis of governance)”首次出现在1989年世界银行关于撒哈拉以南非洲的发展报告中,该报告将该地区的危机描述为“治理危机”。此后“治理”的概念被广泛用于各种体制问题的研究中,它首先被使用在政治学领域中,然后扩展到社会、经济领域。因此,“治理”是一个概念性术语,具有极为广泛的含义。在政治学领域,“治理”意味着“政府治理”;在商业管理领域,“治理”指“公司治理”。这2个领域的研究对政府大数据治理的概念的形成起着主要的作用。
 
公 司治理(corporation governance)被定义为“影响公司领导、管理或控制方式的一系列过程、惯例、政策、法律和制度”。公司治理下的实践领域之一是信息技术(information technology)治理,即IT治理。IT治理被定义为“组织领导、组织结构与组织过程,确保组织的IT支撑,并维护组织战略和组织目标”。国际标准化组织(International Organization for Standardization,IOS)等行业组织已经建立了详细的IT治理标准和流程,许多公司和政府组织已将其付诸实践。这些IT治理实践大多数由以企业资源计划(enterprise resource planning,ERP)或客户关系管理(customer relationship management,CRM)等软件应用程序为中心的常见IT组织结构和使用信息系统结构的模式演变而成。从大型机到客户机、服务器体系结构,再到Web应用程序,IT部门一直专注于应用程序和应用程序的用户交互,而很少关注驱动应用程序的数据。通常,管理数据是根据数据如何服务于特定应用程序进行的,而不是根据它们如何服务于整个组织的战略利益进行的。因此,IT治理实践主要围绕组织的应用程序而不是其数据进行设计。大多数组织中均有明确定义的所有者、流程和策略对企业软件应用程序进行管理。但是,许多组织缺乏针对其最有价值的核心数据资产的等效治理结构。为了增加数据作为商业资产的价值,公司和政府组织需要建立用于使用、开发和管理数据的标准、策略和流程,以创建正确的组织结构和开发相应的技术基础设施。数据治理(data governance)作为一种根植于公司治理和IT治理的实践,被定义为“管理和确保企业数据的可用性、可访问性、质量、一致性、可审计性和安全性所需的流程、策略、标准、组织和技术。只要有需要,数据治理就可以向合适的人提供合适的数据集,以帮助决策者做出正确的决策。国际标准化组织已经建立了数据治理标准和流程,数据治理研究所(Data Governance Institute)制定了数据治理框架,IBM提出了数据管理统一流程。由于数据的大量增长,大数据管理已成为IT和业务领域的挑战。一方面,大数据通常是结构化、非结构化和半结构化的数据,而现有的数据治理不适用于半结构化和非结构化数据。另一方面,大多数大数据技术不提供数据治理功能。由于缺少对大数据治理的设计和考虑,因此从现有数据集向大数据过渡时,不仅数据完整性和数据质量受到威胁,现有的数据治理也面临着挑战。Al-badi等人提出了大数据治理框架,并对该大数据框架与ISO提出的数据治理框架进行了比较,比较结果表明,其提出的大数据治理框架满足ISO 8000标准的87%。
 
政府治理(government governance)突出了政府的主导性作用,它沿袭了新公共管理(new public management,NPM)的概念,政府治理由政府掌舵,政府与非政府组织的关系是委托与代理的关系,非政府组织发挥工具性作用。网络化治理(network governance)、整体性治理(holistic governance)和数字治理(digital governance)是目前主要的3种政府治理模式。网络化治理主要是指政府的工作不太依赖传统意义上的政府雇员,而是更多地依赖网络。整体性治理是指在组织和部门明确分工的前提下,将整合与协调结合,既满足了组织强制力下的团结,同时又相互协调各自的目标,解决组织间目标的冲突,从而形成一种持久的有机团结。数字治理也被称为数字时代治理(digital-era governance),是指在政府与自身或社会的互动中运用数字技术,简化行政程序和公共事务处理程序,提高民主化程度的治理模式。电子政务(E-government)是一般意义的数字治理。电子政务作为IT治理概念在政府部门的具体应用,是指政府机构采用信息技术转变政府与民众、企业以及其他政府组织之间的关系,由此带来的好处包括减少腐败、增加政府透明度、提高政府服务的便利性、降低政府运行的成本。我国的电子政务治理模式继承了IT治理模式的思路,但是在治理结构的安排方面却依然保守化,未能与现有政府管理模式有效匹配。尽管信息化领导小组、部级联席会议制等发挥了一定作用,但是由于缺乏长期性的合理安排,存在多种形式的利益冲突,工作实施过程中仍然存在困难。
 
政府拥有民众、企业以及政府各级机构的大量数据,并利用这些数据进行决策和服务社会。民众通常认为政府应该在使用个人数据时保护个人隐私、保证数据质量,但是实际情况是由数据使用不当或者数据错误导致的公共数据管理问题时有发生。这些问题通常不是源于现有的政府业务规则或者技术本身,而是由缺乏数据治理机制和能力导致的。政府数据治理(government data governance)作为政府治理的重要组成部分,需要充分结合数据管理的法律、组织、技术、标准等多种因素,确保政府数据的使用合法合规,并保障数据的安全,以维持政府数据资产的有效价值。政府数据治理着眼于政府部门之间的内部数据流动关系,强调数据处理过程中的强关联性,主张数据治理从分散走向集中、从部分走向整体、从碎片走向整合,要求系统化配置数据资源,并建立一体化的治理内容框架。
 
据统计,有31%的政府数据是非结构化的数据,这些数据具有大数据特征。政府在管理和利用大数据方面的挑战除了数据量大、数据种类繁多、数据变化快之外,还有数据孤岛、数据安全性和数据合法性。每个政府部门通常都有自己的机密信息和公共信息仓库,通常不愿把他们认为专有的数据共享给他人。政府的每个系统都将其数据与其他系统隔离,使得政府机构和部门之间共享数据变得更加复杂。数据安全是政府大数据的主要属性,因此收集、存储和使用数据需要特别注意安全问题。但是,当今大多数大数据技术(包括Casandra和Hadoop)缺乏足够的安全工具,这使数据安全成为政府的另一项挑战。同时,政府还必须在使用数据时满足相关的合法性和合规性要求。发挥政府大数据的潜力需要新的大数据治理框架。政府大数据治理(government big data governance)是政府行政管理及政府治理的重要组成部分,原因如下:其一,政府通过引入大数据及相关技术改变其治理方式;其二,政府作为信息化建设的管理主体,关注并协调其管辖范围内与大数据建设相关的主体,并基于数据治理的基本特征优化现有信息治理条件。就治理对象而言,既包括政府数据及技术、基础设施及应用,也包括资源价值积累过程中涉及的权责利关系;就治理手段而言,既包括元数据等传统数据管理方法,也包括投资收益管理等行政管理手段。若要提升政府大数据治理水平,需同时考虑治理对象和实际治理的动态变化与过程。
 
综上所述,IT治理、数据治理和大数据治理均是公司治理的一部分。数据治理是IT治理的一部分,大数据治理是数据治理的一部分。电子政务、政府数据治理和政府大数据治理一方面继承了公共和行政管理领域的治理理论和行政管理手段,是数字治理的一部分,另一方面也借鉴了公司治理中IT治理、数据治理和大数据治理的框架、方法和工具,相关治理概念之间的关系如图2所示。政府数据治理是电子政务的一部分,政府大数据治理是政府数据治理的一部分。
 
 
 
图2 政府大数据治理概念溯源
 
3 政府大数据治理的涵义和特征
 
政府和商业企业性质的主要差异见表1。企业的主要目标是通过提供商品和服务、开发/维持竞争优势来获取利润,通过提供价值来满足客户和其他利益相关者的需求。政府的主要目标是维持国家稳定、社会安宁,实现可持续发展,确保公民的基本权利,促进总体福利和经济的增长。大多数企业处在竞争激烈的市场环境中,决策由少数人参与,且决策时间短。政府的决策通常需要更长的时间,要大量参与者的协商和相互同意才能进行决策。因此,需要采取许多明确的步骤来降低风险,提高政府决策的效率和效力。商业企业的动力来自其参与市场竞争获得的收入和利润,因此企业通过提高生产效率,降低生产成本,开发具有竞争力的产品和服务,达到增加收入的目的。政府的收入主要来自税收,其主要职责是协调各方利益,监督各方活动是否合规合法,以提高社会整体福利。因此,政府与企业之间的大数据属性以及应用也有所不同。
 
 
 
由于政府和企业性质存在差异,政府大数据和企业大数据的性质自然也存在差异,政府大数据和企业大数据性质的主要差异见表2。政府不仅要面对、处理由源头多、格式和价值密度不同导致的大数据集成的一般问题,而且还面临一些特殊的挑战。
 
● 数据收集困难。数据不仅来自多个渠道(如政府传统业务系统、社交网络、Web和众包),而且来自不同的源头(如政府机构、企业和民众)。
 
 
 
● 政府部门之间数据集成和共享困难。每个政府机构或部门通常都有自己的机密信息或公共信息仓库,各机构通常不愿共享他们认为专有的数据。每个系统都将其数据与其他系统进行隔离,即产生了数据孤岛,使得在政府机构和部门之间整合、共享数据变得更加复杂。
 
● 数据安全是政府大数据的主要属性,因此收集、存储和使用数据需要遵守政策法规。但是,当今大多数大数据技术(包括Casandra和Hadoop)缺乏足够的安全工具,这使安全成为政府的另一项挑战。
 
● 高度监管的行业(如金融服务和卫生医疗)的合规性仍然是大数据政府项目收集和处理数据的另一个挑战,因为这些行业的数据收集和使用必须遵守国家的相关法律、法规和标准,如隐私保护、健康信息保护等。
 
企业大数据的计划和实施一般不受太多非技术因素的干扰,而政府大数据的应用无法突破政府中现有的政治和结构限制,需要政府制定战略、出台政策、制定法规、实施项目和评估影响等。政府大数据治理有2个视角。一个视角是对政府大数据的采集、存储、共享、管理和监督。首先,政府数据是大数据的一种,具有全面、细粒度、数量庞大、可被发现和重新利用等特点。政府长期利用自身的行政数据和绩效数据实施基于证据的决策,如人口普查数据在数据多样性和变化速度上具有大数据的特征,因此常被看作大数据,并且作为政府政策分析的基础。其次,政府对自身的数据缺乏管理。Thompson等人指出政府机构中广泛存在数据管理不当现象,例如被评估为不适合拥有枪支的人拥有枪支、急诊科信息系统无需身份验证等限制就可以访问病人的隐私信息,他认为这些问题通常不是由现有规则或技术本身引起的,而是由缺乏完善的数据治理引起的。因此,政府需要制定政府数据治理标准,并评估其对政策和标准的遵守情况。另一个视角是针对特定政策问题的政府大数据利用。首先,政府缺少足以解决特定政策问题的数据,即负责机构通过常规手段收集的数据无法解决政府特定政策中提出的问题。其次,政府收集的数据主要用于管理和审计,而不是用于解释意料之外的某个问题的原因。因此,政府需要使用大数据解决特定政策问题,而现有的常规数据不能满足要求。世界银行组织发布的“政府大数据在行动(big data in action for government)”报告指出,政府利用大数据主要是为了提升公共服务效率和效能、提高政策决策水平、增加民众参与政府治理的深度和广度。范灵俊等人提出的政府大数据治理指的也是政府大数据利用。
 
综上所述,本文研究的“政府大数据”是指政府机构通过多种渠道直接或间接收集的来自多个源头的多样性数据,包括结构化的、半结构化的和非结构化的数据。政府大数据具有大数据的特征,同时还具有其他大数据(如企业大数据)没有的特征,包括“数据孤岛”现象严重,整合和共享困难,数据的安全性、合法性、合规性要求高。“政府大数据治理”包含两方面含义。一是对政府大数据的采集、存储、共享、管理和监督。政府负责制定策略、出台政策、制定法规和标准,通过新技术平台和工具方法管理政府大数据。针对跨部门、跨领域的数据,通过制定自上而下的大数据管理制度和流程进行数据的管理、集成和共享,以整合政府各部门“数据烟囱”中积累的结构化或非结构化数据集。二是在各级政府部门以及各种政策领域应用政府大数据解决政府面临的挑战和问题。政府大数据应用程序的主要关注点在政府数据安全性、合法性、合规性、互操作性等方面;政府应用大数据的特定政策领域包括突发公共安全、突发卫生健康、犯罪、自然灾害、恐怖主义、国防等。
 
4 政府大数据治理的新挑战与新目标
 
政府大数据治理一方面是管理政府大数据,另一方面是利用政府大数据。政府数据的唯一性、高质量和高价值密度是政府决策和向公众提供公共产品和服务的重要支撑。除了政府部门,社会组织和商业企业也在积极探索如何利用政府数据。越来越多的企业提供的产品和服务依赖政府数据,如企业提供的天气服务、地图服务、金融服务、医疗健康服务、生活服务等。政府数据开放获取和政府数据再利用一直是社会组织和企业关注的问题,但是政府部门暂未给出明确的答案。
 
从历史上看,绝大多数政府严格控制其数据/信息资源,发布的数据/信息通常采用印刷文件这种不方便在线传送且费用高的方式;对于数据/信息的再利用通常采用限制性许可或者通过交易基金等方式进行限制;提供的内容通常不是全部内容,只是部分内容。政府限制对政府数据的获取一方面源于政府保密文化,另一方面是政府逐渐认识到政府数据本身具有可利用的特征,可以从这些数据中获得商业价值和社会价值。过去10年来,在一些专注于开发公共部门信息市场的游说团体和开放政府和信息的自由活动家的倡导和宣传下,开放数据运动在全球有了相当大的进展,该运动要求政府以开放许可、可重复使用的格式提供原始政府数据。美国、英国等建立了开放政府数据平台(如data.gov、data.gov.uk),开放了非常多的政府数据集。开放数据运动强调了对政府开放数据的要求:“开放的数据必须是原始数据,而不是汇总或者被修改的数据”“开放数据可以自由使用、再利用和再分配,如果需要许可,最多只要满足属性和共享许可的要求”“数据可以通过网络批量下载”。但是现在开放的政府数据有很多并不是原始数据,而是衍生或者统计汇总的数据,只提供链接到查询接口或者进行交互式访问,而不提供批量数据集下载,大多数政府开放数据都只允许在非商用许可条款下使用,并对下游数据用户提出限制性要求。
 
如今,企业开发的很多产品和服务包含对政府数据的增值利用。在绝大多数情况下,政府是这些数据的唯一提供者,并且在很多情况下,政府也向用户提供同类的增值服务和产品,与企业进行竞争。在向用户提供服务和产品方面,政府与企业相比,存在服务质量不足、价格过高等问题。
 
政府部门出于多种原因(如法定义务、公共任务、政府活动)收集并生产数据和信息,数据和信息涉及经济和商业、法律、政治、文化、环境、交通运输、科学、气象、水文、地理、卫生、社交等方面,范围十分广泛。这些数据和信息大部分可以供政府、企业和民众使用,作为信息来源、决策工具和新产品新服务开发的输入。这些数据和信息形成了政府大数据,除了一部分可以直接出售给消费者和企业外,还被政府用来开发自己的产品和服务,然后与企业竞争,政府数据增值再利用过程如图3所示。
 
政府数据增值利用涉及产权问题、服务质量问题、竞争问题。政府倾向于对政府数据拥有全部产权或者部分产权,一方面是为了从产权中获益,另一方面是为了鼓励产权保护下的创新。企业则认为政府数据的产权许可模式增加了企业利用政府数据的成本,妨碍了企业使用政府数据创新。在为用户提供高质量的服务方面,政府部门可能存在动力不足的现象,主要是因为政府提供的服务往往属于垄断地位,不像企业存在很多的竞争对手。如果企业使用政府数据,相对于政府本身使用政府数据,可能开发出更有竞争力的高质量的产品和服务。但是如果政府不提供这些数据给企业,企业就无法开发新的产品和服务。有些政府数据(如地图数据)由于具有高附加值,只有少数机构或者企业能获得,形成垄断市场,破坏了竞争。

(编辑:潍坊站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!