使用这个轻量级 Linux 桌面提高你的工作效率
|
2.2.2 设备建设的协同 当5G+4G共址建设时,可以采用5G基站反向开通4G功能的共模方式建设,以同时满足两网的业务需求。在设备安排上,原有4G D频段窄带设备(60MHz)RRU支持频段与5G设备重合,可考虑拆迁至外围区域以继续发挥其容量能力,避免设备浪费,迁移到需求区域的新选址补盲或者已有站址补充容量需求。对带宽富裕的物理扇区,可同步考虑F频段拆除,此时可利旧整套4G基带和射频设备,投资节约做到最大化。对于天面资源竞争激烈的平台,窄带RRU拆除后,抱杆资源有被占用的风险,需尽量规避。 若不拆除4G D频段设备,需考虑其设备频率与NR协同的要求,由于这部分设备只支持60MHz带宽且与5G初期规划频段部分重合(重合部分为40MHz带宽),同时4G设备移频能力较差,势必造成生命周期较短。另外,还需考虑到这种情况下,非共模设备较难实现频段内联合传输和资源共享等技术手段,4G网络性能将受到一定程度的影响。 根据以上分析,我们在开展建设的时候,通常采用拆除老旧D频段设备,同时通过5G反向开通4G功能的方式弥补4G网络覆盖与容量的需求。 2.3 5G+4G频率共享技术 5G商用初期,网络承载业务较少,此时,通过功率共享技术实现制式间160MHz频谱资源的分配与调整,兼顾5G+4G双制式网络的容量需求,提升频谱资源利用率。随着5G网络用户和业务逐渐发展,最终形成单制式100MHz+60MHz目标方案。 2.3.1 静态的频率分配及共享技术 在5G建设初期,开展4G D频段清频的同时,还需考虑5G和4G频率资源共享分配方案。可以按照面向当下,优先满足业务需求的原则,根据不同的业务场景按需分配带宽,采用不同的频率使用策略。
2.3.2 动态频率分配技术 考虑到5G和4G网络长期共存协同发展的需求,除了以上静态的频率分配与共享机制,还需推动产业界实现5G设备2.6GHz频率5G+4G完全动态共享技术的成熟与应用,提升资源调动灵活性,降低网络维护成本。 5G+4G动态频谱共享技术可灵活适配小区业务需求,实现在同一块载波上同时支持两种业务的随机调度,从而更加充分地提升设备利用率及160MHz带宽频率资源使用效率。载波动态共享实现机制如下。 通常情况下,5G载波配置4个UE的工作带宽(BWP),终端视能力配置1个或者4个BWP,当UE从BWP0接入后,视网络初始配置接入到对应的BWP。当5G载波与4G同覆盖时,5G+4G动态频谱共享技术使得5G载波可实现对支持多个BWP的动态调整,从而实现载波根据需求在休眠与激活两种状态之间变化,这个过程即频谱“重分配”过程。5G+4G动态频谱共享技术可根据触发“重分配”的判决条件,实现分钟以上级别的频谱动态调配。 2.4 5G+4G功率共享 2.4.1 功率协同配置影响分析 当前5G基站设备可达到240W标称功率(远期需求320W),考虑D频段为5G分配100MHz带宽、4G分配20MHz带宽时,5G可满足200W满功率配置。如果4G需要更多的载波配置,则将出现功率受限的情况,此时,需考虑5G+4G功率分配以最大化网络性能。 首先分析不同功率配置对容量影响:当4G新增开通2~3个D频段载波(且通过5G反向开通4G后具备3D-MIMO能力)、同时每载波按照2W/Hz的功率谱密度进行满功率配置,此时,5G剩余配置160W功率,5G网络将由于功率的降低带来约10%的容量损失,而同时4G网络由于功率充足,可获得高于低功率配置时42%的容量提升。不同的功率配置对容量的损失比例计算结果见表1。
表1 不同功率配置对4G和5G网络容量的影响 (编辑:潍坊站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |

